Make Objects Float

Purpose

To demonstrate how water displacement causes objects (such as ships) to float rather than sink.


Additional information

Sink or swim! Displacement specifies the position of a point in reference to an origin or to a previous position. Boats manage to stay afloat because their weight is equal or less than the water it displaces.


Sponsored Links


Required materials

  • Very large jar * (note: should be an old jar as you'll need to mark it)
  • Empty soda bottle
  • Water
  • Black permanent marker
  • Notepad and pen to record results

Estimated Experiment Time

Less than an hour to set-up and conduct


Step-By-Step Procedure

  • 1. Pour some water into the large jar so that it's approximately 1/2 filled
  • 2. Mark a point on the jar at the top of the water-line using your black marker (note: you may also use tape to mark the point)
  • 3. Pour some water into the soda bottle so it too is approximately 1/2 filled
  • 4. Mark a point on the bottle at the top of the water-line using your black marker
  • 5. Drop the soda bottle into the large jar (the bottle should float)
  • 6. Record the results in your journal
  • 7. Fill the soda bottle completely with water and again place it in the large jar
  • 8. If the bottle does not completely sink, mark the new water-line on the jar
  • 9. Record the results in your journal

Note

Depending on the size of your jar (and your soda bottle) the bottle may not sink when it's completely full. If that's the case, try using a slightly smaller jar or larger soda bottle.


Observation

Make sure to make careful observations of what's happening each time you drop in the bottle. Marking the bottle and jar allows you to track the differential of water displacement. Be sure to record the variance in your journal so you can answer questions about the experiment. For example: What happened when you dropped in the bottle of soda when it was 1/2 full? How much water was pushed up in the jar? Did the bottle sink? What happened the second time when the bottle was filled with water? Can you describe the process of displacement in relation to this experiment?


Result

When the bottle with 1/2 water was dropped into the jar, the weight of the bottle caused the water to rise by pushing it away from itself. The difference between the marked water-line on the jar and the new one is how much water was pushed away or displaced. The second time when you filled the soda bottle with water and dropped it into the jar, it sank to the bottom because it became heavier than the water it was pushing away.


Sponsored Links


Take a moment to visit our table of Periodic Elements page where you can get an in-depth view of all the elements, complete with the industry first side-by-side element comparisons!


Your email:
Your name:
Recipient email:
Recipient name:
Message:
 

Print this page   Bookmark this page  

Hide/View all projects Hide all projects Hide/View all projects

All Projects List

  • Accelerate Rusting
  • Acids And Bases
  • Additive Colors
  • Ant Microphotography
  • Apple Mummy
  • Balloon Rocket Car
  • Barney Banana
  • Bending Water
  • Bernoulli’s Principle
  • Blind Spot in Vision
  • Boiling Point of Water
  • Build an Electromagnet
  • Build an Inclinometer
  • Caffeine And Typing
  • Candle Race
  • Candy Molecules
  • Capillarity of Soils
  • Carbon in the Atmosphere
  • Checking vs. Savings
  • Chemical Metamorphosis
  • Clean Cleaners
  • Cleaning Oil Spills
  • Climbing Colors
  • Cloud Cover
  • CO2 & Photosynthesis
  • Collecting DNA
  • Colorful Celery
  • Coloring Matter in Food
  • Colors And Temperature
  • Composition of a Shell
  • Computer Passwords
  • Construct a Lung Model
  • Corrosiveness of Soda
  • Create a Heat Detector
  • Create Lightening
  • Cultivate Slime Molds
  • Cup of Lava
  • Dehydrated Potato
  • Desalinate Sea Water
  • Detergents and Plants
  • Dissolving in Liquids
  • Dissolving Solutes
  • Distillation of Water
  • Double Color Flower
  • Egg in a Bottle
  • Enzyme Activity
  • Eroding Away
  • Erosion Simulator
  • Evaportating Liquids
  • Expanding Soap
  • Exploding Ziploc
  • Extracting Starch
  • Fans And Body Temp
  • Fertilizer & Plants
  • Filtration of Water
  • Floating Ball Experiment
  • Floating Balloon
  • Fog Formation
  • Font and Memory
  • Food and Academics
  • Friction And Vibration
  • Fruit Battery Power
  • Full and Low Fat Foods
  • Galileo's Experiment
  • Gas To Liquid
  • Grape Juice & Cleaners
  • Gravity and Plants
  • Green Slime
  • Growing a Crystal
  • Growing Bread Mold
  • Growing Population
  • Haemoglobin Binding
  • Hard vs. Soft Water
  • Homemade Floam
  • Home-made Geodes
  • Home-Made Glue #1
  • Homemade Snowflakes
  • Home-made Stethoscope
  • Homemade Volcano
  • Homemade Windmill
  • Human Battery Power
  • Inertia of an Egg
  • Information and CD’s
  • Invisible Ink
  • Isolation of Bread Mold
  • Isolation of DNA
  • Jar Compass
  • Lemon Floaties
  • Levers And Force
  • Lift an Ice Cube
  • Light Colors and Plants
  • Long Lasting Bubbles
  • Magic Balloons
  • Magnified Light
  • Make a Compost Pile
  • Make a Fuse Model
  • Make a Parallel Circuit
  • Make An Elevator
  • Make Electric Circuits
  • Make Limestone
  • Make Objects Float
  • Make Static Electricity
  • Make your own sundial
  • Matchbox Guitar
  • Math and Gender
  • Mean, Median and Range
  • Measuring Air Pollution
  • Mentos Soda Volcano
  • Microbial Contaminants
  • Milky Plastic
  • Mini Greenhouse
  • Missing Reflection
  • Mixing With Water
  • Molls Experiment
  • Music and Plants
  • Musical Bottles
  • Nocturnal Plants
  • Ocean Life & Oil Spills
  • Ocean Temperature
  • Optical Mice
  • Oral Bacteria
  • Orange Water Volume
  • Organic vs. Inorganic
  • Osmosis
  • Oven Baked Ice Cream
  • Oxygen & Photosynthesis
  • Paper Bridge
  • Paper Marbling
  • Pascal’s Law
  • Play-Doh and Volume
  • Preserve Spider Webs
  • Pressure Volcano
  • Pulse Rates
  • Pythagorean Tuning
  • Refraction in Water
  • Rollercoasters & Loops
  • Rubber Bones
  • Rubber Heat Reaction
  • Rubbery Egg
  • Rust and Moisture
  • Search Engines
  • Secondary Colors
  • Seed Germination
  • Seed Germination II
  • Separate Salt And Pepper
  • Snappy Sounds
  • Soil Erosion
  • Soil vs. Hydroponics
  • Sound Waves
  • Spectrum through Water
  • Speed of Decomposition
  • Speed of Dissolving
  • Spore Prints
  • Star Observer
  • Static Electricity
  • Statistics and M&M’s
  • Stem-less Flowers
  • Super Strength Egg
  • Sweet Erosion
  • Temperature and CPUs
  • Thirsty Rocks
  • Tornado Demonstration
  • Translucent Egg
  • Transpiration in Plants
  • Typing and Speed
  • Vibrating Coin
  • Volcanic Gas
  • Water and Living Things
  • Water Displacement
  • Water Evaporation
  • Water pH
  • Your Planetary Age