Gas To Liquid

Purpose

To physically see the water that exists in the air through the process of condensation.


Additional information

The atmosphere is like a river full of water, only we can't see it. Water exists in a gaseous state in the atmosphere, almost like it's shrouded in a cloak of invisibility. Even though we can't see it, it's still there! What if there was a way to pull the water from the aid and physically see it? We can through the process of condensation!

Condensation is the change of the physical state of matter from gaseous phase into liquid phase. As a naturally occurring phenomenon, condensation can be used to generate drinkable water for human use. In fact, there have been a large number of devices created to extract water from the air, including a device that produces 600 gallons of drinkable water per day for US soldiers serving in high-heat military zones, such as IRAQ and Afghanistan.


Sponsored Links


Required materials

  • Glass jar with lid
  • Several ice cubes
  • Table salt
  • Tissue paper

Estimated Experiment Time

Less than 5 to set-up, about 30 minutes to conduct


Step-By-Step Procedure

  • 1. Fill the jar with your ice cubes. There should be enough ice cubes so that they reach the top, but leave enough room so you can securely tighten the cap.
  • 2. Add to heaping tablespoons of salt into the jar, covering the ice. Screw on the lid of the jar tightly.
  • 3. Shake the jar vigorously for about 30 seconds.
  • 4. Place the jar on a solid surface, such as a table. Leave the jar for a short while (about 10 minutes).
  • 5. When you return to your jar, observe if your jar has water droplets on the outside. If it does not, leave the jar undisturbed for a while longer. When the jar does finally have visible water droplets on the outside, proceed to step 6.
  • 6. Wrap your tissue around the outside of the jar, then take it off and observe how wet it is!

Note

The rate at which the droplets (known as condensation) begin to form on the outside of the jar will vary depending on the environmental conditions where the experiment is taking place.


Observation

At what point did you start to see water droplets? Can you explain what's happening? How could the water droplets be forming on the OUTSIDE of the jar when the ice is on the INSIDE of the jar, and the cap is screwed on tight? Where have you seen other natural occurrences of condensation? (here's a hint... think of what's on the ground on a cold morning).


Result

The salted ice quickly makes the sides of the glass jar very cold. As the water that exists in the air as a gas hits the cold sides of the jar, it changes into a liquid! This process is known as condensation, which is the opposite of evaporation. There is water in the air at all times, but we don't see it since it's in a gaseous state. Our experiment turns the gas into a liquid, allowing us to physically see the water.


Sponsored Links


Take a moment to visit our table of Periodic Elements page where you can get an in-depth view of all the elements, complete with the industry first side-by-side element comparisons!


Your email:
Your name:
Recipient email:
Recipient name:
Message:
 

Print this page   Bookmark this page  

Hide/View all projects Hide all projects Hide/View all projects

All Projects List

  • Accelerate Rusting
  • Acids And Bases
  • Additive Colors
  • Ant Microphotography
  • Apple Mummy
  • Balloon Rocket Car
  • Barney Banana
  • Bending Water
  • Bernoulli’s Principle
  • Blind Spot in Vision
  • Boiling Point of Water
  • Build an Electromagnet
  • Build an Inclinometer
  • Caffeine And Typing
  • Candle Race
  • Candy Molecules
  • Capillarity of Soils
  • Carbon in the Atmosphere
  • Checking vs. Savings
  • Chemical Metamorphosis
  • Clean Cleaners
  • Cleaning Oil Spills
  • Climbing Colors
  • Cloud Cover
  • CO2 & Photosynthesis
  • Collecting DNA
  • Colorful Celery
  • Coloring Matter in Food
  • Colors And Temperature
  • Composition of a Shell
  • Computer Passwords
  • Construct a Lung Model
  • Corrosiveness of Soda
  • Create a Heat Detector
  • Create Lightening
  • Cultivate Slime Molds
  • Cup of Lava
  • Dehydrated Potato
  • Desalinate Sea Water
  • Detergents and Plants
  • Dissolving in Liquids
  • Dissolving Solutes
  • Distillation of Water
  • Double Color Flower
  • Egg in a Bottle
  • Enzyme Activity
  • Eroding Away
  • Erosion Simulator
  • Evaportating Liquids
  • Expanding Soap
  • Exploding Ziploc
  • Extracting Starch
  • Fans And Body Temp
  • Fertilizer & Plants
  • Filtration of Water
  • Floating Ball Experiment
  • Floating Balloon
  • Fog Formation
  • Font and Memory
  • Food and Academics
  • Friction And Vibration
  • Fruit Battery Power
  • Full and Low Fat Foods
  • Galileo's Experiment
  • Gas To Liquid
  • Grape Juice & Cleaners
  • Gravity and Plants
  • Green Slime
  • Growing a Crystal
  • Growing Bread Mold
  • Growing Population
  • Haemoglobin Binding
  • Hard vs. Soft Water
  • Homemade Floam
  • Home-made Geodes
  • Home-Made Glue #1
  • Homemade Snowflakes
  • Home-made Stethoscope
  • Homemade Volcano
  • Homemade Windmill
  • Human Battery Power
  • Inertia of an Egg
  • Information and CD’s
  • Invisible Ink
  • Isolation of Bread Mold
  • Isolation of DNA
  • Jar Compass
  • Lemon Floaties
  • Levers And Force
  • Lift an Ice Cube
  • Light Colors and Plants
  • Long Lasting Bubbles
  • Magic Balloons
  • Magnified Light
  • Make a Compost Pile
  • Make a Fuse Model
  • Make a Parallel Circuit
  • Make An Elevator
  • Make Electric Circuits
  • Make Limestone
  • Make Objects Float
  • Make Static Electricity
  • Make your own sundial
  • Matchbox Guitar
  • Math and Gender
  • Mean, Median and Range
  • Measuring Air Pollution
  • Mentos Soda Volcano
  • Microbial Contaminants
  • Milky Plastic
  • Mini Greenhouse
  • Missing Reflection
  • Mixing With Water
  • Molls Experiment
  • Music and Plants
  • Musical Bottles
  • Nocturnal Plants
  • Ocean Life & Oil Spills
  • Ocean Temperature
  • Optical Mice
  • Oral Bacteria
  • Orange Water Volume
  • Organic vs. Inorganic
  • Osmosis
  • Oven Baked Ice Cream
  • Oxygen & Photosynthesis
  • Paper Bridge
  • Paper Marbling
  • Pascal’s Law
  • Play-Doh and Volume
  • Preserve Spider Webs
  • Pressure Volcano
  • Pulse Rates
  • Pythagorean Tuning
  • Refraction in Water
  • Rollercoasters & Loops
  • Rubber Bones
  • Rubber Heat Reaction
  • Rubbery Egg
  • Rust and Moisture
  • Search Engines
  • Secondary Colors
  • Seed Germination
  • Seed Germination II
  • Separate Salt And Pepper
  • Snappy Sounds
  • Soil Erosion
  • Soil vs. Hydroponics
  • Sound Waves
  • Spectrum through Water
  • Speed of Decomposition
  • Speed of Dissolving
  • Spore Prints
  • Star Observer
  • Static Electricity
  • Statistics and M&M’s
  • Stem-less Flowers
  • Super Strength Egg
  • Sweet Erosion
  • Temperature and CPUs
  • Thirsty Rocks
  • Tornado Demonstration
  • Translucent Egg
  • Transpiration in Plants
  • Typing and Speed
  • Vibrating Coin
  • Volcanic Gas
  • Water and Living Things
  • Water Displacement
  • Water Evaporation
  • Water pH
  • Your Planetary Age